The Status of Women in Academia

Rachel Croson
University of Texas at Dallas

Co-PI NSF ADVANCE Leadership Grant
Member, AWIS-ADVANCE Program Committee

Gender (In)Equity:

Women and men in the (academic) workforce

- Big picture
- Women earn about 2/3 of what men earn for full-time employment around the world
- Within a profession and controlling for rank, women earn 10-15\% less than men
- About 1\% of Fortune 500 CEOs are women
- Academia
- Women PhDs are less likely to choose academic jobs than men
- Women academics earn less, have less lab space \& other resources
- Women are less likely to be granted tenure in every field
- In economics, women are 22% of assistants, 15% of associates, 6% of professors; not a pipeline problem

Why Gender Equity Matters

- Quality
- Failing to use the talents and energy of half our population negatively affects the potential quality of future faculty
- Legitimacy
- Faculty demographics that differ from students' can carry messages that discourage women from entering the academy, marginalized women faculty exacerbate this effect
- Fairness
- Aspire to meritocracy, but fail to recognize and reward women's talents and energies

Today's Talk

- Review of others' work (!)
- Documenting gender inequities in academia
- Ginther \& Kahn (2009, 2006a, 2006b, 2004a, 2004b, 2003a, 2003b, 2002); Ginther \& Hayes (1999)
- Explaining gender inequities in academia - Valian (1999), Steinpreis, Anders \& Ritzke (1999), Wenneras \& Wold (1997), Goldin \& Rouse (2000), Trix \& Psenka (2003)
- Suggestions for moving forward (discussion)

Ginther and Coauthors

- Use 1973-2001 Survey of Doctorate Recipients (SDR)
- Biennial, Longitudinal Survey of U.S. Doctorates
- Used by NSF to analyze scientific labor force
- Includes Humanities 1977-1995
- Tenure-track or tenured academics (not practitioners)

Fields Covered

- Life Science
- Agriculture and Food Science, Biology

Physical Science (together "Science")

- Chemistry, Earth Science, Physics
- Engineering
- Social Science
- Economics, Psychology, Sociology, Anthropology, Political Science
- Humanities
- History, Philosophy, English, Modern Languages, Classics, Fine Arts

Controls in Analyses

- Academic field
- Degree institution characteristics
- University/College employer characteristics
- Rank and Tenure status
- Primary work activities (research/teaching)
- Government Support of Research
- Publications (number vs. quality)

Representation

- Good: Social science (except economics), humanities, life-science
- Not-so-good: Physical science, Economics
- Ugly: Engineering

Figure 1: Percentage of Doctorates Granted to Females, 1974-2004 Suvey of Earned Doctorates

Figure 3: Percentage of Tenured Faculty who are Female, by Discipline

Source: 1973-2001 Survey of Doctorate Recipients

Hiring

- Gender and Marital / Children status interact
- Rates of tenure-track job within 5 years of PhD
- Single women are 16\% more likely than (all) men
- Married women are 17% less likely than (all) men
- Married women with children are 20\% less likely than (all) men

Promotion

- Good: Science, Engineering
- Not-so-good: Social science (except economics); humanities
- Ugly: Economics

Relative Tenure Rates: 10 Years Past PhD

Figure 4--Predicted Survival without Tenure Functions, by Gender and Discipline

Salaries

- Control for rank
- Good: Humanities
- Not-so-good: Social Science
- Ugly: Sciences and Engineering

Gender Differences in Salary by Rank

\square Assistant \square Associate \square Full

Economic Explanations for the Salary

Gap

- Gap not the result of:
- Marriage \& Children
- Differences in Productivity
- Gap largely explained by gender differences in the returns to work experience.
- Men rewarded more than women for each year of experience
- Consistent with Cumulative Advantage Model

Alternative Explanations

- Marriage and Children (endogeneity)
- Impacts hiring and promotion, but not salaries
- Self-selection (Summers)
- Impacts hiring and promotion, but not salaries
- Productivity
- Include productivity controls
- Women more productive than men at Research I institutions

Conclusion

- Each discipline has unique challenges for gender equity
- E.g. Engineering: getting the PhD
- E.g. Sciences (Life and Natural): Salary inequity (possibly space and other resources)
- E.g. Economics: promotion/tenure rates
- Possible explanation: Men recognized and rewarded more than women for similar productivity levels (see below)

Gender Schemas (Valian 1999)

- Non-conscious hypotheses about male/female differences that guide everyone's (men's and women's) perceptions and behaviors
- Expectations or stereotypes that define "average" members of a group
- E.g. Men are instrumental, task-oriented, competent
- E.g. Women are nurturing, emotional, and care about relationships
- Normal, human brains categorize
- More likely to apply them when group or category salience is high

Valian 1999, Why So Slow? The Advancement of Women MIT Press

Fidell (1970)

- Sent 10 one-paragraph descriptions to department chairmen (psychology)
- Varied gender in each
- Varied other details (e.g. experimental vs. clinical, publication rate, marital status, ...)
- Asked to judge
- The chances of this person getting an offer for a full-time position (1-7)
- At what level (Full, Associate, Assistant, Research Associate, Lecturer, Other)
- Rank quality

Results

- 68\% response rate (155 responses)
- Men are somewhat more likely to get offer
- Two exceptions; stereotypically "female" fields
- Men get significantly higher-ranked offers ($p<.01$)
- 48% vs 37% Associate overall
- Men ranked somewhat higher (same description)
- Note: dated (e.g. marital status)...

Probability of Offer (1-7; higher better)

'IABLE 2
Means and Standard Deviations of Desiralithty
Ratings ror Men and Women

Paragraph	11	SD	$M_{\text {Men }} \text { - Women }$
Ross			
James	3.29	1.26	-+. 32
Janet	2.97	1.17	
Baxter			
Albert.	1.69	. 78	$-.19$
Alice	1.88	. 93	
Wilson			
Eugene	2.20	1.16	+. 27
Edith	1.93	1.08	
Lasalle			
'Thomton	4.88	1.37	+. 25
'Thelma	4.63	1.28	
Guyer			
Donald	3.95	1.42	$-.17$
I onna	4.12	1.39	
Pinney			
'Thomas	3.39	1.44	$+.17$
Theresa	3.22	1.47	
Norton			
Jomathan	5.89	1.07	- +-. 16
Joan	5.73	. 99	
Clavel			
Patrick	4.96	1.50	+. 47
Patricia	4.49	1.48	

Rank of Offer

TABLE 1
Proportion of Responses at Each Academic Levet. for Men and for Womfn

Paragraph	"Other"	Lecturer	Research associate	Assistant professol	Associate professor	$\begin{gathered} \text { Full } \\ \text { professor } \end{gathered}$
Ross						
James	. 01	. 00	. 01	. 47	. 50	. 00
Janct	. 07	. 03	. 01	. 51	. 38	. 00
Baxter						
Albert	. 33	. 07	. 03	. 49	. 08	. 00
Alice	. 33	. 08	. 05	. 43	. 11	. 00
Wilson						
Eugene	. 26	. 05	. 00	. 55	. 14	. 00
Edith	. 31	. 14	. 03	. 44	. 08	. 00
LaSalle						
Thornton	. 00	. 00	. 07	. 19	. 74	. 00
Thelma	. 03	. 00	. 12	. 28	. 57	. 00
Guyer						
Donald	. 05	. 01	. 03	. 52	. 39	. 00
Domia	. 03	. 01	. 04	. 64	. 28	. 00
Pinney						
Thomas	. 10	. 01	. 03	. 36	. 49	. 00
Theresa	. 05	. 08	. 03	. 39	. 44	. 00
Norton \quad 年						
Jonathan	. 00	. 00	. 01	. 15	. 75	. 08
Joan	. 03	. 01	. 04	. 24	. 68	. 00
Clavel						
Patrick	. 03	. 03	. 00	. 34	. 59	. 01
Patricia	. 03	. 03	. 00	. 50	. 44	. 00
Men	. 10	. 02	. 02	. 39	. 46	. 01
Women	. 11	. 05	. 04	. 43	. 37	. 00

Steinpreis, Anders and Ritzke (1999)

- Update (and more careful)
- Sent CV (real) to faculty (psychology)
- Male/female rookie, male/female tenured
- Between-subjects design (one CV/gender only)
- 238 male and female academics
- Would you hire?
- Does applicant have adequate experience?

More Likely to Hire Males (p<.001)

Independent of Own Gender

Other Ratings

- Male candidates more likely to have
- Adequate research ($p<.005$), teaching ($p<.005$), service experience ($p<.005$)
- Even though the CVs are the same!
- Concerns about female candidates
- Respondents four times more likely to write cautionary comments in the margins of the questionnaire for female candidates
- "We would have to see her job talk"
- "It is impossible to make such a judgement without teaching evaluations"
- "I would need to see evidence that she had gotten these grants and publications on her own"

Wenneras \& Wold (1997)

- Sweden, biomedical academics
- Peer-reviewed system of Swedish Medical Research Council (postdoctoral fellowships)
- Vita, bio, research proposal
- Reviewed by one of 11 evaluation committees
- Score of 0-4 on three attributes (multiplied, averaged across reviewers)
- Scientific competence
- Relevance of the research proposal
- Quality of the methodology

Data

- Scores from 1995 applications
- Women scored lower on all three parameters
- .25 lower on scientific competence, .13 on relevance, .17 on methodology
- Were women less productive (scientifically competent)?
- Number of papers, number of first-authors, impact factor of journals, citation count
- Calculated "total impact"

Results

Figure 1 The mean competence score given to male (red squares) and female (blue squares) applicants by the MRC reviewers as a function of their scientific productivity, measured as total impact. One impact point equals one paper published in a journal with an impact factor of 1 . (See text for further explanation.)

- Regression of competence scores with controls
- Male dummy significant; 0.21 extra competence points
- Approximately three extra papers in Science or Nature, or 20 extra papers in top specialty journal
- Women had to be 2.5 x as productive as men to get same score

Regression Results

Scientific productivity				Additional points given by the reviewers for the following factors			Size of the influence of the non-scientific factors in productivity equivalents		
Multiple regression model based on:	r^{2}	Intercept	Competence points per productivity unit	Male gender	Reviewer affiliation	Recommendation letter	Male gender	Reviewer affiliation	Unit of measure
Total impact	0.47	2.09	$\begin{aligned} & 0.0033 \\ & <0.00005^{*} \end{aligned}$	$\begin{aligned} & 0.21 \\ & <0.00005 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.0008 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 64 \\ & (35-93)+ \end{aligned}$	$\begin{aligned} & 67 \\ & (29-105) \end{aligned}$	Impact points
First-author impact	0.44	2.13	$\begin{aligned} & 0.0094 \\ & <0.0001 \end{aligned}$	$\begin{aligned} & 0.24 \\ & <0.00005 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.005 \end{aligned}$	NS	$\begin{aligned} & 25 \\ & (14-36) \end{aligned}$	$\begin{aligned} & 21 \\ & (6-36) \end{aligned}$	Impact points
First-author citations	0.41	2.17	0.0054	$\begin{aligned} & 0.23 \\ & <0.00005 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.001 \end{aligned}$	NS	$\begin{aligned} & 42 \\ & (23-61) \end{aligned}$	$\begin{aligned} & 42 \\ & (17-67) \end{aligned}$	Citations during 1994

Trix and Psenka (2003)

- Letters of recommendation for medical school faculty (linguistics)
- All letters from successful applicants for faculty in large American medical school 19921995 (312 letters)
- Compare letters written for male (222) and female (89) hires

Results: Existence

- Women more likely to get minimal letters
-15% vs 6% ($p=.021$); women's letters were only 84\% as long as men's
- Women more likely to have doubts raised
-24% vs 12% ($p=.01$)
- Stereotypical terms
- For men
- "successful" (7\% vs 3\%)
- "accomplishment or achievement" (13\% vs 3\%)
- For women
- "compassionate" (16\% vs 4\%)
- "grindstone" (34\% vs 23\%)

Results: Frequency

- Male letters include more instances of "standout" adjectives (excellent, superb, ...)
- 2.0 vs 1.5
- Male letters more likely to mention "research" multiple times
-62\% vs 35%
- Male letters more likely to include scientific terminology
- 3.3 lines vs 1.9 lines

Results: Possessives (his/her)

FIGURE 3. Semantic realms following possessives. Rank-ordered within gender sets from equal numbers of letters 'her training'; 'his research'

Results: Possessives (his/her)

FIGURE 4. Distinctive semantic realms following possessives. Greatest contrasts across genders in equal number of letters 'her personal life'; 'his publications'

Goldin and Rouse (2000)

- Auditions of musicians for orchestras
- Before 1980, 12\% female or less
- 1970-1980, start of open auditions
- Some in view, some behind screen (Blink, Gladwell)
- Data on applicant pool, advancement, and hiring
- Impact of screen on female hiring is significant
- Controls for ability, year of audition, instrument played, ...

Table 5-Average Success at Auditions by Sex and Stage of Audition for the Subset of Musicians Who Auditioned Both Blind and Not Blind

	Blind		Not blind	
	Proportion advanced	Number of person-rounds	Proportion advanced	Number of person-rounds
	Preliminaries without semifinals			
Women	$\begin{gathered} \hline 0.286 \\ (0.043) \end{gathered}$	112	$\begin{gathered} 0.193 \\ (0.041) \end{gathered}$	93
Men	$\begin{gathered} 0.202 \\ (0.026) \end{gathered}$	247 Prelimi	$\begin{gathered} 0.225 \\ (0.031) \\ \text { mifinals } \end{gathered}$	187
Women	$\begin{gathered} \hline 0.200 \\ (0.092) \end{gathered}$	20	$\begin{gathered} 0.133 \\ (0.091) \end{gathered}$	15
Men	$\begin{gathered} 0.083 \\ (0.083) \end{gathered}$	12	$\begin{gathered} 0.000 \\ (0.000) \end{gathered}$	8
Women	$\begin{gathered} 0.385 \\ (0.061) \end{gathered}$	65	$\begin{gathered} 0.568 \\ (0.075) \end{gathered}$	44
Men	$\begin{gathered} 0.368 \\ (0.059) \end{gathered}$	68	$\begin{gathered} 0.295 \\ (0.069) \end{gathered}$	44
Women	$\begin{gathered} 0.235 \\ (0.106) \end{gathered}$	17	$\begin{gathered} 0.087 \\ (0.060) \end{gathered}$	23
Men	$\begin{gathered} 0.000 \\ (0.000) \end{gathered}$	12	$\begin{gathered} 0.133 \\ (0.091) \end{gathered}$	15
Women	$\begin{gathered} 0.027 \\ (0.008) \end{gathered}$	445	$\begin{gathered} 0.017 \\ (0.005) \end{gathered}$	599
Men	$\begin{gathered} 0.026 \\ (0.005) \end{gathered}$	816	$\begin{gathered} 0.027 \\ (0.005) \end{gathered}$	1102

Summary

- Exist many other studies (within and outside academics), supporting gender schemas
- success is attributed to skill for men and luck for women (Deaux and Emswiller 1974)
- biases are more pronounced under time pressure (Martell 1991)
- women perceived to be worse leaders (Eagly and coauthors)
- reliance on qualifications (education vs experience) depends on the pool (Norton et al. 2004)...

What to Do?

- Education is the first step (show me the data)
- Identify hurdles at individual schools/departments (get new data)
- Compare hiring/retention rates with pool, peers
- Identification
- e.g. Harvard
- Especially when pool is small and market is decentralized (engineering)
- Offers made
- Objective evaluation policies
- Especially when current faculty are mostly male (natural sciences)
- Recruitment
- Spousal hires
- Family leave policies, ...

Other Policies to Consider/Benchmark

- Maternity/Paternity leave
- New norm: 1 semester off teaching (1/2 load), 1 year on clock (no penalty)
- Decisions: Male/female, adoption, other life-events
- Other on-ramps and off-ramps
- Half-time appointments, longer clocks, ...
- Spousal hiring policies
- Especially when only game in town
- E.g. Penn State, Michigan, Indiana, Columbia ...
- Mentoring and advising

Conclusion and Summary

- Gender equity is important (instrumental and ontological)
- Improvements in academia, but still inequities
- Hiring, promotion, salary differentials
- Field-specific (need individualized solutions)
- Possible reasons: subtle bias
- Solutions
- Customized for institution, field
- Virginia Tech portal (ADVANCE IT sites)

